Fringe instability in constrained soft elastic layers.
نویسندگان
چکیده
Soft elastic layers with top and bottom surfaces adhered to rigid bodies are abundant in biological organisms and engineering applications. As the rigid bodies are pulled apart, the stressed layer can exhibit various modes of mechanical instabilities. In cases where the layer's thickness is much smaller than its length and width, the dominant modes that have been studied are the cavitation, interfacial and fingering instabilities. Here we report a new mode of instability which emerges if the thickness of the constrained elastic layer is comparable to or smaller than its width. In this case, the middle portion along the layer's thickness elongates nearly uniformly while the constrained fringe portions of the layer deform nonuniformly. When the applied stretch reaches a critical value, the exposed free surfaces of the fringe portions begin to undulate periodically without debonding from the rigid bodies, giving the fringe instability. We use experiments, theory and numerical simulations to quantitatively explain the fringe instability and derive scaling laws for its critical stress, critical strain and wavelength. We show that in a force controlled setting the elastic fingering instability is associated with a snap-through buckling that does not exist for the fringe instability. The discovery of the fringe instability will not only advance the understanding of mechanical instabilities in soft materials but also have implications for biological and engineered adhesives and joints.
منابع مشابه
Instabilities in confined elastic layers under tension: Fringe, fingering and cavitation
Under tension, confined elastic layers can exhibit various modes of mechanical instabilities, including cavitation, fingering and fringe instabilities. While the cavitation has been extensively studied, the fingering and fringe instabilities have not been well understood, and the relations and interactions of these instabilities have not been explored yet. In this paper, we systematically study...
متن کاملDynamic Instability Analysis of Embedded Multi-walled Carbon Nanotubes under Combined Static and Periodic Axial Loads using Floquet–Lyapunov Theory
The dynamic instability of single-walled carbon nanotubes (SWCNT), double-walled carbon nanotubes (DWCNT) and triple-walled carbon nanotubes (TWCNT) embedded in an elastic medium under combined static and periodic axial loads are investigated using Floquet–Lyapunov theory. An elastic multiple-beam model is utilized where the nested slender nanotubes are coupled with each other through the van d...
متن کاملNanoscale buckling deformation in layered copolymer materials.
In layered materials, a common mode of deformation involves buckling of the layers under tensile deformation in the direction perpendicular to the layers. The instability mechanism, which operates in elastic materials from geological to nanometer scales, involves the elastic contrast between different layers. In a regular stacking of "hard" and "soft" layers, the tensile stress is first accommo...
متن کاملA State Space Method for Surface Instability of Elastic Layers With Material Properties Varying in Thickness Direction
A state space method is proposed for analyzing surface instability of elastic layers with elastic properties varying in the thickness direction. By assuming linear elasticity with nonlinear kinematics, the governing equations for the incremental stress field from a fundamental state are derived for arbitrarily graded elastic layers subject to plane-strain compression, which lead to an eigenvalu...
متن کاملSurface creasing instability of soft polyacrylamide cell culture substrates.
Efforts to understand and engineer cell behavior in mechanically soft environments frequently employ two-dimensional cell culture substrates consisting of thin hydrogel layers with low elastic modulus supported on rigid substrates to facilitate culturing, imaging, and analysis. Here we characterize how an elastic creasing instability of the gel surface may occur for the most widely used soft ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 12 43 شماره
صفحات -
تاریخ انتشار 2016